Belajar Mudah Rumus Barisan Dan Deret Geometri Untuk Pemula: Cara Menghitung Rasio Dan Suku Ke-n

Rumus Barisan dan Deret Geometri

Barisan dan deret geometri adalah suatu konsep matematika yang sangat penting untuk dipahami. Barisan geometri adalah rangkaian bilangan yang terbentuk dengan cara mengalikan dengan suatu bilangan tetap yang disebut rasio. Sedangkan deret geometri adalah jumlah dari barisan geometri. Pada artikel ini, kita akan membahas rumus barisan dan deret geometri secara detail.

Barisan Geometri

Barisan geometri adalah rangkaian bilangan yang memiliki pola penjumlahan yang sama. Barisan geometri terdiri dari bilangan awal (a) dan rasio (r). Rasio adalah bilangan tetap yang digunakan untuk mengalikan bilangan awal sehingga diperoleh bilangan kedua, ketiga, keempat, dan seterusnya. Rasio ini penting karena melalui rasio, kita bisa mengetahui bilangan-bilangan selanjutnya dalam barisan tersebut.

Cara Menentukan Rasio

Rumus Deret Geometri, Pengertian, dan Contoh Soal

Rasio dapat ditentukan dengan membagi bilangan kedua dalam barisan dengan bilangan pertama. Contohnya, jika bilangan pertama dalam barisan adalah 2 dan bilangan kedua adalah 6, maka rasio adalah 6 dibagi 2, yaitu 3. Dengan mengetahui rasio, kita bisa menentukan bilangan-bilangan selanjutnya dalam barisan tersebut. Contohnya, jika rasio adalah 3 dan bilangan pertama adalah 2, maka bilangan kedua adalah 2 x 3 = 6, bilangan ketiga adalah 6 x 3 = 18, dan seterusnya.

Cara Menentukan Suku ke-n Barisan Geometri

Untuk menentukan suku ke-n dalam barisan geometri, kita bisa menggunakan rumus:

an = a x rn-1

Di mana:

an = suku ke-n dalam barisan geometri
a = bilangan awal dalam barisan geometri
r = rasio dalam barisan geometri
n = urutan suku dalam barisan geometri

TRENDING:  Rumus Barisan Dan Deret: Simak Pembahasan Lengkap Mengenai Konsep Dan Contoh Penggunaannya

Contohnya, jika bilangan awal dalam barisan geometri adalah 2 dan rasio adalah 3, maka untuk menentukan suku ke-4 dalam barisan geometri, kita bisa menggunakan rumus di atas:

a4 = 2 x 3^3

a4 = 2 x 27

a4 = 54

Jadi, suku ke-4 dalam barisan geometri tersebut adalah 54.

Cara Menentukan Jumlah Suku pada Barisan Geometri

Untuk menentukan jumlah suku pada barisan geometri, kita bisa menggunakan rumus:

Sn = a x (rn – 1) / (r – 1)

Di mana:

Sn = jumlah suku pada barisan geometri
a = bilangan awal dalam barisan geometri
r = rasio dalam barisan geometri
n = jumlah suku pada barisan geometri

Contohnya, jika bilangan awal dalam barisan geometri adalah 2, rasio adalah 3, dan jumlah suku dalam barisan geometri adalah 5, maka untuk menentukan jumlah suku pada barisan geometri tersebut, kita bisa menggunakan rumus di atas:

S5 = 2 x (3^5 – 1) / (3 – 1)

S5 = 2 x (243 – 1) / 2

S5 = 2 x 242 / 2

S5 = 242

Jadi, jumlah suku pada barisan geometri tersebut adalah 242.

Deret Geometri

Deret geometri adalah hasil penjumlahan dari barisan geometri. Deret geometri terdiri dari bilangan awal (a), rasio (r), dan jumlah suku (n). Dalam deret geometri, jumlah suku dapat mencapai tak terbatas asalkan rasio lebih kecil dari 1.

Cara Menentukan Jumlah Suku pada Deret Geometri

Untuk menentukan jumlah suku pada deret geometri, kita bisa menggunakan rumus:

Sn = a x (1 – rn) / (1 – r)

Di mana:

Sn = jumlah suku pada deret geometri
a = bilangan awal dalam barisan geometri
r = rasio dalam barisan geometri
n = jumlah suku pada barisan geometri

Contohnya, jika bilangan awal dalam barisan geometri adalah 2, rasio adalah 3, dan jumlah suku pada deret geometri adalah 5, maka untuk menentukan jumlah suku pada deret geometri tersebut, kita bisa menggunakan rumus di atas:

TRENDING:  1. Mengenal Barisan Dan Deret Geometri: Contoh Soal Dan Pembahasannya2. Rumus Dan Contoh Soal Barisan Dan Deret Geometri Yang Perlu Kamu Ketahui3. Belajar Barisan Dan Deret Geomet

S5 = 2 x (1 – 3^5) / (1 – 3)

S5 = 2 x (-242) / (-2)

S5 = 242

Jadi, jumlah suku pada deret geometri tersebut adalah 242.

Cara Menentukan Jumlah Tak Terbatas Suku pada Deret Geometri

Jumlah tak terbatas suku pada deret geometri dengan rasio lebih kecil dari 1 dapat ditentukan dengan rumus:

S∞ = a / (1 – r)

Di mana:

S∞ = jumlah tak terbatas suku pada deret geometri
a = bilangan awal dalam barisan geometri
r = rasio dalam barisan geometri

Contohnya, jika bilangan awal dalam barisan geometri adalah 2 dan rasio adalah 1/2, maka untuk menentukan jumlah tak terbatas suku pada deret geometri tersebut, kita bisa menggunakan rumus di atas:

S∞ = 2 / (1 – 1/2)

S∞ = 2 / 1/2

S∞ = 4

Jadi, jumlah tak terbatas suku pada deret geometri tersebut adalah 4.

Penutup

Rumus barisan dan deret geometri sangat penting untuk dipahami karena dapat membantu kita menyelesaikan berbagai masalah dalam matematika. Dalam artikel ini, kita telah membahas cara menentukan rasio, suku ke-n, jumlah suku, jumlah tak terbatas suku pada barisan dan deret geometri. Dengan memahami rumus-rumus ini, diharapkan pembaca dapat lebih mudah dalam menghadapi soal-soal matematika yang berkaitan dengan barisan dan deret geometri.